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Introducing Computational Storage Devices (CSDs)

● Computational Storage → Near-data processing

● Runs software where data resides

● Potential performance improvement

○ Offload tasks from host
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Introduction

● Originally used Spark and HadoopFS

● Collected interesting results, but this method had its issues

○ Limited Application

○ Too much overhead to gauge CSDs’ raw performance

● Solution? Rewrite our benchmarks without Spark:

○ Serial Python

○ Serial & Parallel C++ (Combinations of OpenMP & OpenMPI)
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Why Serial Python?

Able to test on single core with no overhead.

Compare efficiency of different solutions.

● Implementations:

○ SparkDF & SparkSQL → Pandas (Dataframes) & Numpy (Matrices)

○ Natively written functions (no libraries)

○ Dataframes → Lists
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Experiment Results: Running on One CSD
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Function 100 MB 200 MB 500 MB 1 GB 5 GB

Count Lines 5.4598 e -5 5.3644 e -5 5.4836 e -5 5.4836 e -5 N/A

Sum of Column 0.1135 0.2281 0.5687 1.2115 N/A

Mean of Column 3.5763 e -5 3.5048 e -5 3.5048 e -5 4.0054 e -5 N/A

Grammarian Matrix: AT*A 17.9477 35.6603 89.483 190.936 N/A

Normalize Column 5.3809 10.6566 25.6559 55.5248 N/A

Compute Mean 0.1138 0.2273 0.5676 1.2162 N/A

Compute Std Dev 3.6919 7.173 17.9616 38.0247 N/A

Count Digits 6.668 6.4407 16.0995 34.4509 N/A

Measure Shannon Entropy 343.624 650.1484 1699.7029 3576.3302 N/A

Total Elapsed Time 6.8031 Minutes 13.1948 Minutes 34.1343 Minutes 71.9462 Minutes N/A



Where to Go From Python?

Python’s Shortcomings

● Running in “parallel” is less than ideal in native Python

Using Python’s Multithreading Libraries?

● Typically accelerates one machine

● C++ implementation would be more thorough
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Duplicating Spark Tests in C++

● C++ is “lower level” than Pyspark or basic Python
○ Lets us get a better understanding of CSDs baseline performance

● Basic C++ Implementation is a reimplemented version of our Spark program, with a 
single-threaded and a multi-threaded version using OpenMP

Single-Threaded Multi-Threaded
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Results
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Results contd.
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Results contd.
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C++ Conclusions and Thoughts

● Compared to Spark and Python, C++ implementation is a lot faster
○ Caveat: an expert with Spark or Python would likely be able to improve the performance of 

those implementations
● Computational power of our CSDs seem to be much lower than the host 

machine
○ Using all 4 cores of a single CSD, the job takes ~6.8x longer than using just one core on the 

host machine.
○ Host also seems to scale better with increasing file size

● Resulting Question: When, if ever, would it make sense to use CSDs for 
compute rather than a much-faster host?
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Host (1.5GHz) and CSDs (1GHz)

Host:  128GB RAM (8GB swap)

Architecture:                    x86_64

CPU(s):                          64

Thread(s) per core:              2

Core(s) per socket:              32

Socket(s):                       1

CSD (x8):  5.8 GB RAM

Architecture:        aarch64

CPU(s):              4

Thread(s) per core:  1

Core(s) per socket:  4

Socket(s):           1



Disclaimer: Our test was done using host system and 1 csd node (not the full 8 supported). This analysis 
applies specifically to the operations used in this experiment. 

Why use MPI?    

Tests: Quickest scalable operations:

● Compute mean (constant time)
● Normalized Compute sum
● Normalized Compute standard deviation
● Normalized Count frequency of digits
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How to Offload Selected Operations?



When does it make sense to distribute our operations to 
the CSD?   Host and CSD reading in log file 
- Tool used: stress-ng  --cpu 64 --vm 1 --vm-bytes 95% (stressed RAM and core count)
- Stressed Host tested with mounted CSD storage. 
- No Stress CSD tested with mounted CSD storage.  
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Can message passing be used to decrease csd vector 
build time 

Issue:

● Most expensive operations for the CSD was to read file and build vector.
● Host completes those operations in 5.86(s)(stressed) 3.91(s)(no stress)
● CSD completes those operations in 23.75(s)

Test: 

● 100MB/200MB/500MB/1GB/2GB log file.
● The host reads file from CSD storage and creates vector.  Host will then message pass vector to csd.  
● See if there is an decrease in overall time for csd to complete its operations.
● Additional parameter for mpirun --mca btl_tcp_if_include flannel.1 (includes interface)
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Offloading operations passing vector to CSD 

- Tool used: stress-ng  --cpu 64 --vm 1 --vm-bytes 95% (stressed RAM and core count)
- Stressed Host tested with mounted CSD storage. 
- No Stress CSD tested with mounted CSD storage.  
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Still does not make sense on a per operation comparison

- Operation costs on a 1GB data log.
- Even after vector is in memory, the 

csd still executes the operation 
significantly slower than the 
stressed host test.

- Future work needs to be done with 
a focus on small operations.  CSDs 
seem to be of more use in smaller 
operations on smaller files.   



Future work for passing 
information 

- Further investigate MPI’s 
usage for communication.

- Need to develop a better way 
for host and csds to share 
storage.

- Create a pooled storage for 
CSDs, possibly ZFS.

- Data filtering 
(encrypt/decrypt)
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CSDs with 
Charliecloud

About Charliecloud
Background on experiments

Analysis of results
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About Charliecloud

● Bring your own software stack
○ Containers
○ Container images

■ Code
■ System tools
■ Runtime
■ Settings

● Charliecloud Images 
○ Few permissions
○ Minimally affect cluster resources
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Build Location Storage Location

Host NVME Host NVME

Host tmpfs Host tmpfs

CSD NVME CSD NVME

CSD tmpfs CSD tmpfs

Experiments ● Typical workflow: Build image 
on a compute node 

○ (Inefficient!)
● Research Question: What is 

the best filesystem to store 
user images on in a cluster 
environment? 

○ Compare small CSD to big host
○ Compare big host to LANL’s fog 

(later) 
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CSDs out-perform host on small image? 
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Build Location Storage Location

NVME NVME

tmpfs NVME

NFS NFS

LUSTRE LUSTRE

tmpfs LUSTRE

tmpfs NFS

Experiments
● How does our host with NVME 

compare to a LANL production 
setup? 

○ Lustre on Fog vs 
○ NFS on Fog vs 
○ NVME on our host
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Our host
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NVMe vs Other Filesystems

Our host



Conclusions and Next Steps

● Future work on variability across runs
○ Implications for scaling to larger container image builds

● Viability of CSDs for medium term storage

● Potential use case for CSDs with Charliecloud
○ Envisioning a new user workflow 
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Overall times to complete all operations per data size
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Method Spark Python C++

1 CSDs 8 CSDS
Serial on 

CSD
Serial on CSD

Multithread 
on CSD

Host stressed and 
CSD

Host stressed

100MB     N/A    N/A 408 s 45.47s 43.94s 36.83s 9.82s

200MB     N/A    N/A 792 s 90.61s 87.40s 72.51s 19.36s

500MB     N/A     N/A 2,048 s 229.10s 217.09s 181.97s 48.16s

1GB 2759.17s 542.44s 4,317 s 457.74s 432.54s 358.16s 94.61s

2GB     N/A     N/A      N/A 929.60s 870.97s 714.72s 187.58s


